Cell News | Issue 04, 2014 - page 41

plants live perfectly well without them. And one may further
wonder why some differentiated animal cells that no longer
divide, like neurons or leucocytes, retain a centrosome
while others such as myotubes eliminate centrosomes? Like-
wise, why do some resting cells grow a primary cilium
whereas others never do, despite having the appendages on
the mother centriole that could enable them to do so? Can
we propose a unified functional framework in which all
these differences would make sense? Cell polarity and its
transmission to daughter cells through division in somatic
lineages, or from the male gamete to the zygote through fer-
tilization in most animal species, come across as a broad
unifying theme that encompasses the numerous functions
in which the centrosome can be involved.
In closing, let us reiterate that one cannot hope to get at a
comprehensive understanding of centrosome function in
diverse systems without a comparative analysis of the cellular
economy resulting from the survival strategy of each organism.
This is what makes the study of centrosomes both important
and attractive. We trust that this Theme Issue will both provide
a snapshot of the progress to date and fuel advances for the
years to come. Hopefully, the next collective coverage will
have answers for many of the questions that are open in 2014
and undoubtedly come up with new ones!
Acknowledgements.
We thank members of our laboratories and col-
leagues around the world for interesting discussions over the years.
We are grateful also to Fernando R. Balestra and Paul Guichard for
useful comments on the manuscript and help in preparing the
figure. We wish to thank the following people who acted as referees
on the papers within this issue: Miguel Angel Alonso, Kathryn
Anderson, Renata Basto, Mo´ nica Bettencourt-Dias, Trisha Davis,
Stefan Duensing, Susan Dutcher, Andrew Fry, Joseph Gall, David
Glover, Keith Gull, Edward Hinchcliffe, Andrew Jackson, Alexey
Khodjakov, Akatsuki Kimura, Michael Knop, Ryoko Kuriyama,
James Maller, Thomas Mayer, Andrea McClatchey, Nicolas Minc,
Ciaran Morrison, Kevin O’Connell, Judith Paridaen, Chad Pearson,
Laurence Pelletier, Franck Perez, Claude Prigent, Jordan Raff, Gre-
gory Rogers, Jeffrey Salisbury, Songhai Shi, Yukiko Yamashita and
Manuela Zaccolo.
Funding statement.
M.B. is supported by CNRS and Institut Curie. Work
on centrosome duplication in the laboratory of P.G. is supported by a
grant from the ERC (AdG 340227).
References
1.
Fulton C. 1971 Centrioles. In
Origin and continuity of
cell organelles
, vol. 2 (eds J Reinert, H Ursprung),
pp. 170–221. Heidelberg, Germany: Springer.
2.
Kalnins V. 1992
The centrosome
. New York, NY:
Academic Press.
3.
Palazzo R, Schatten GP. 2000
The centrosome in cell
replication and early development
, vol. 49. San
Diego, CA: Academic Press.
4.
Nigg E. 2004
Centrosomes in development and
disease
. New York, NY: Wiley.
5.
Scheer U. 2014 Historical roots of centrosome
research: discovery of Boveri’s microscope slides in
Wu¨rzburg.
Phil. Trans. R. Soc. B
369
, 20130469.
(doi:10.1098/rstb.2013.0469)
6.
Paoletti A, Moudjou M, Paintrand M, Salisbury JL,
Bornens M. 1996 Most of centrin in animal cells is
not centrosome-associated and centrosomal centrin
is confined to the distal lumen of centrioles.
J. Cell
Sci.
109
, 3089–3102.
7.
Lwoff A. 1950
Problems of morphogenesis in ciliates:
the kinetosomes in development, reproduction and
evolution
. New York, NY: Wiley.
8.
Bobinnec Y, Khodjakov A, Mir LM, Rieder CL,
Edde B, Bornens M. 1998 Centriole disassembly
in vivo
and its effect on centrosome structure
and function in vertebrate cells.
J. Cell
Biol.
143
, 1575 – 1589. (doi:10.1083/jcb.143.6.
1575)
9.
Kirkham M, Mu¨ller-Reichert T, Oegema K, Grill S,
Hyman AA. 2003 SAS-4 is a
C. elegans
centriolar
protein that controls centrosome size.
Cell
112
, 575 –587. (doi:10.1016/S0092-8674(03)
00117-X)
10. Delattre M, Leidel S, Wani K, Baumer K, Bamat J,
Schnabel H, Feichtinger R, Schnabel R, Go¨nczy P.
2004 Centriolar SAS-5 is required for centrosome
duplication in
C. elegans
.
Nat. Cell Biol.
6
, 656–664.
(doi:10.1038/ncb1146)
11. Lee JY, Stearns T. 2013 FOP is a centriolar satellite
protein involved in ciliogenesis.
PLoS ONE
8
,
e58589. (doi:10.1371/journal.pone.0058589)
12. Sillibourne JE, Hurbain I, Grand-Perret T, Goud B,
Tran P, Bornens M. 2013 Primary ciliogenesis
requires the distal appendage component Cep123.
Biol. Open
2
, 535–545. (doi:10.1242/bio.20134457)
13. Bornens M, Azimzadeh J. 2007 Origin and
evolution of the centrosome.
Adv. Exp. Med. Biol.
607
, 119–129. (doi:10.1007/978-0-387-74021-
8_10)
14. Azimzadeh J. 2014 Exploring the evolutionary
history of centrosomes.
Phil. Trans. R. Soc. B
369
,
20130453. (doi:10.1098/rstb.2013.0453)
15. Kochanski RS, Borisy GG. 1990 Mode of centriole
duplication and distribution.
J. Cell Biol.
110
,
1599–1605. (doi:10.1083/jcb.110.5.1599)
16. Belmont LD, Hyman AA, Sawin KE, Mitchison TJ.
1990 Real-time visualization of cell cycle-dependent
changes in microtubule dynamics in cytoplasmic
extracts.
Cell
62
, 579–589. (doi:10.1016/0092-
8674(90)90022-7)
17. Rousselet A, Euteneuer U, Bordes N, Ruiz T, Hui Bon
Hua G, Bornens M. 2001 Structural and functional
effects of hydrostatic pressure on centrosomes from
vertebrate cells.
Cell Motil. Cytoskeleton
48
,
262–276. (doi:10.1002/cm.1014)
18. Janke C, Bulinski JC. 2011 Post-translational
regulation of the microtubule cytoskeleton:
mechanisms and functions.
Nat. Rev. Mol. Cell Biol.
12
, 773–786. (doi:10.1038/nrm3227)
19. Dutcher SK, Trabuco EC. 1998 The UNI3 gene is
required for assembly of basal bodies of
Chlamydomonas
and encodes delta-tubulin, a new
member of the tubulin superfamily.
Mol. Biol. Cell
9
, 1293–1308. (doi:10.1091/mbc.9.6.1293)
20. Dutcher SK, Morrissette NS, Preble AM, Rackley C,
Stanga J. 2002 Epsilon-tubulin is an essential
component of the centriole.
Mol. Biol. Cell
13
,
3859–3869. (doi:10.1091/mbc.E02-04-0205)
21. Dupuis-Williams P, Fleury-Aubusson A, de Loubresse
NG, Geoffroy H, Vayssie L, Galvani A, Espigat A, Rossier
J. 2002 Functional role of epsilon-tubulin in the
assembly of the centriolar microtubule scaffold.
J. Cell Biol.
158
, 1183–1193. (doi:10.1083/jcb.
200205028)
22. Garreau de Loubresse N, Ruiz F, Beisson J, Klotz C.
2001 Role of delta-tubulin and the C-tubule in
assembly of
Paramecium
basal bodies.
BMC Cell Biol.
2
, 4. (doi:10.1186/1471-2121-2-4)
23. Winey M, O’Toole E. 2014 Centriole structure.
Phil.
Trans. R. Soc. B
369
, 20130457. (doi:10.1098/rstb.
2013.0457)
24. van Breugel M
et al
. 2011 Structures of SAS-6
suggest its organization in centrioles.
Science
331
,
1196–1199. (doi:10.1126/science.1199325)
25. Kitagawa D
et al
. 2011 Structural basis of the 9-fold
symmetry of centrioles.
Cell
144
, 364–375. (doi:10.
1016/j.cell.2011.01.008)
26. Hirono M. 2014 Cartwheel assembly.
Phil.
Trans. R. Soc. B
369
, 20130458. (doi:10.1098/rstb.
2013.0458)
27. Kuriyama R, Borisy GG. 1981 Centriole cycle in
Chinese hamster ovary cells as determined by
whole-mount electron microscopy.
J. Cell Biol.
91
,
814–821. (doi:10.1083/jcb.91.3.814)
28. Chre´tien D, Buendia B, Fuller SD, Karsenti E. 1997
Reconstruction of the centrosome cycle from
cryoelectron micrographs.
J. Struct. Biol.
120
,
117–133. (doi:10.1006/jsbi.1997.3928)
29. Keller LC, Geimer S, Romijn E, Yates III J, Zamora I,
Marshall WF. 2009 Molecular architecture of the
centriole proteome: the conserved WD40 domain
protein POC1 is required for centriole duplication
and length control.
Mol. Biol. Cell
20
, 1150–1166.
(doi:10.1091/mbc.E08-06-0619)
rstb.royalsocietypublishing.org
Phil. Trans. R. Soc. B
369
: 20130452
7
on October 7, 2014
rstb.royalsocietypublishing.org
Downloaded from
Book Recommendation
1...,31,32,33,34,35,36,37,38,39,40 42,43,44
Powered by FlippingBook