Cell News | Issue 03, 2013 - page 23

as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced dif-
ferentiation in cultured epithelial cells. Biophys J 65, 2021-2040 (1993).
14 Gowrishankar, K. et al. Active remodeling of cortical actin regulates spatiotemporal or-
ganization of cell surface molecules. Cell 149, 1353-1367, doi:10.1016/j.cell.2012.05.008
(2012).
15 Spira, F. et al. Patchwork organization of the yeast plasma membrane into numerous
coexisting domains. Nat Cell Biol 14, 640-648, doi:10.1038/ncb2487 (2012).
16 Spira, F., Dominguez-Escobar, J., Muller, N. & Wedlich-Soldner, R. Visualization of cortex
organization and dynamics in microorganisms, using total internal reflection fluorescence
microscopy. J Vis Exp, e3982, doi:10.3791/3982 (2012).
17 Dominguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosyn-
thetic complexes in bacteria. Science 333, 225-228, doi:10.1126/science.1203466 (2011).
18 Malinska, K., Malinsky, J., Opekarova, M. & Tanner, W. Visualization of protein compart-
mentation within the plasma membrane of living yeast cells. Mol Biol Cell 14, 4427-4436,
doi:10.1091/mbc.E03-04-0221 (2003).
19 Walther, T. C. et al. Eisosomes mark static sites of endocytosis. Nature 439, 998-1003
(2006).
20 Berchtold, D. & Walther, T. C. TORC2 plasma membrane localization is essential for cell
viability and restricted to a distinct domain. Mol Biol Cell 20, 1565-1575, doi:10.1091/mbc.
E08-10-1001 (2009).
21 Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-
mediated endocytosis machinery. Cell 123, 305-320, doi:10.1016/j.cell.2005.09.024 (2005).
22 Gutierrez, R., Lindeboom, J. J., Paredez, A. R., Emons, A. M. & Ehrhardt, D. W. Arabi-
dopsis cortical microtubules position cellulose synthase delivery to the plasma membrane
and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11, 797-806,
doi:10.1038/ncb1886 (2009).
23 Riedl, J. et al. Lifeact mice for studying F-actin dynamics. Nat Methods 7, 168-169,
doi:10.1038/nmeth0310-168 (2010).
24 Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat Methods 5, 605-607,
doi:10.1038/nmeth.1220 (2008).
25 Yu, H. & Wedlich-Soldner, R. Cortical actin dynamics: Generating randomness by
formin(g) and moving. Bioarchitecture 1, 165-168, doi:10.4161/bioa.1.4.17314 (2011).
26 Yu, J. H., Crevenna, A. H., Bettenbuhl, M., Freisinger, T. & Wedlich-Soldner, R. Cortical
actin dynamics driven by formins and myosin V. J Cell Sci 124, 1533-1541, doi:10.1242/
jcs.079038 (2011).
27 Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machi-
nery and MreB filaments in B. subtilis. Science 333, 222-225, doi:10.1126/science.1203285
(2011).
28 van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-
wall assembly. Proc Natl Acad Sci U S A 108, 15822-15827, doi:10.1073/pnas.1108999108
(2011).
29 Freisinger, T. et al. Establishment of a robust single axis of cell polarity by coupling
multiple positive feedback loops. Nat Commun 4, 1807, doi:10.1038/ncomms2795 (2013).
30 Wedlich-Soldner, R., Wai, S. C., Schmidt, T. & Li, R. Robust cell polarity is a dynamic
state established by coupling transport and GTPase signaling. J Cell Biol 166, 889-900,
doi:10.1083/jcb.200405061 (2004).
31 Wedlich-Soldner, R., Altschuler, S., Wu, L. & Li, R. Spontaneous cell polarization through
actomyosin-based delivery of the Cdc42 GTPase. Science 299, 1231-1235, doi:10.1126/sci-
ence.1080944 (2003).
32 Manford, A. G., Stefan, C. J., Yuan, H. L., Macgurn, J. A. & Emr, S. D. ER-to-plasma mem-
brane tethering proteins regulate cell signaling and ER morphology. Dev Cell 23, 1129-1140,
doi:10.1016/j.devcel.2012.11.004 (2012).
33 Tavassoli, S. et al. Plasma membrane-endoplasmic reticulum contact sites regulate
phosphatidylcholine synthesis. EMBO Rep 14, 434-440, doi:10.1038/embor.2013.36 (2013).
Roland Wedlich-Söldner
Institute of Cell Dynamics and Imaging
University of Münster, Münster, Germany
Roland Wedlich-Söldner studied Biology at the Ludwig Maximilians
University (LMU) in Munich. In his PhD at the LMU and the Max
Planck Institute of terrestrial Microbiology in Marburg he studied the molecular and cellular
basis for microtubule dependent membrane trafficking in the plant pathogenic fungus Usti-
lago maydis. During his postdoctoral studies at Harvard Medical School on an EMBO fellow-
ship he studied cell polarity establishment in budding yeast and became entangled by the
then emerging field of systems biology. After witnessing firsthand the power of combining
quantitative imaging techniques with mathematical models, he adopted this approach for
his own group at the Max Planck Institute of Biochemistry, where he assembled a mix of
biologists, physicists and computational scientists to study various problems of cellular dy-
namics and cell patterning. In 2013 Roland Wedlich-Söldner became professor of Multiscale
Imaging in Cell Biology at the University of Münster where he now heads the institute of
Cell Dynamics and Imaging. Ultimately his aim is to decipher the complex patterns of cellular
organization and to understand how the cell ensures that the numerous processes in its
interior run with such high temporal and spatial precision.
P H O T O N I S O U R B U S I N E S S
Exceptional quantum efficiency
Over 70
%
at 600nm
High-speed readout
100
frames/s
CameraLink
at 4.0 megapixels
Low Noise
1.3
electrons median
1.9
electrons rms
Standard scan
at 100 frames/s
0.9
electrons median
1.5
electrons rms
Slow scan
at 30 frames/s
DIGITALCAMERA
R
V2
A game changer from inception and a proven performer
since its initial release, the ORCA-Flash4.0 V2 has many new
features and offers unrivalled flexibility across a wide range
of imaging applications.
And then there’s the highest QE of any sCMOS camera
on the market.
Versatile by Design
1...,13,14,15,16,17,18,19,20,21,22 24,25,26,27,28,29,30,31,32,33,...34
Powered by FlippingBook