Cell News | Issue 04, 2019 - page 28

Cell News 04/2019
28
PRIZE WINNERS 2019
Romera-Hernandez, M., Bénézech, C., Li, Z., Eckly, A., Coles,
M.C., Rot, A., Yagita, H., Léon, C., Ludewig, B., Cupedo, T., Lanza,
F., Mueller, C.G., 2016. Integrin-Alpha IIb Identifies Murine
Lymph Node Lymphatic Endothelial Cells Responsive to RANKL.
PLOS ONE 11, e0151848.
pone.0151848
Debes, G.F., Arnold, C.N., Young, A.J., Krautwald, S., Lipp, M.,
Hay, J.B., Butcher, E.C., 2005. Chemokine receptor CCR7 required
for T lymphocyte exit from peripheral tissues. Nat. Immunol. 6,
889–894.
Förster, R., Mattis, A.E., Kremmer, E., Wolf, E., Brem, G., Lipp,
M., 1996. A Putative Chemokine Receptor, BLR1, Directs B Cell
Migration to Defined Lymphoid Organs and Specific Anatomic
Compartments of the Spleen. Cell 87, 1037–1047.
.
org/10.1016/S0092-8674(00)81798-5
Honda, K., Nakano, H., Yoshida, H., Nishikawa, S., Rennert, P.,
Ikuta, K., Tamechika, M., Yamaguchi, K., Fukumoto, T., Chiba, T.,
Nishikawa, S.-I., 2001. Molecular Basis for Hematopoietic/Mes-
enchymal Interaction during Initiation of Peyer’s Patch Organ-
ogenesis. J. Exp. Med. 193, 621–630.
/
jem.193.5.621
Junt, T., Moseman, E.A., Iannacone, M., Massberg, S., Lang, P.A.,
Boes, M., Fink, K., Henrickson, S.E., Shayakhmetov, D.M., Di Paolo,
N.C., van Rooijen, N., Mempel, T.R., Whelan, S.P., von Andrian,
U.H., 2007. Subcapsular sinus macrophages in lymph nodes
clear lymph-borne viruses and present them to antiviral B cells.
Nature 450, 110–114.
Lindblom, P., Gerhardt, H., Liebner, S., Abramsson, A., Enge, M.,
Hellström, M., Bäckström, G., Fredriksson, S., Landegren, U.,
Nyström, H.C., Bergström, G., Dejana, E., Östman, A., Lindahl, P.,
Betsholtz, C., 2003. Endothelial PDGF-B retention is required for
proper investment of pericytes in the microvessel wall. Genes
Dev. 17, 1835–1840.
Lund, A.W., Duraes, F.V., Hirosue, S., Raghavan, V.R., Nembrini,
C., Thomas, S.N., Issa, A., Hugues, S., Swartz, M.A., 2012. VEGF-C
Promotes Immune Tolerance in B16 Melanomas and Cross-Pre-
sentation of Tumor Antigen by Lymph Node Lymphatics. Cell
Rep. 1, 191–199.
Luther, S.A., Ansel, K.M., Cyster, J.G., 2003. Overlapping roles of
CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph
node development. J. Exp. Med. 197, 1191–1198.
org/10.1084/jem.20021294
Mebius, R.E., Miyamoto, T., Christensen, J., Domen, J., Cupedo,
T., Weissman, I.L., Akashi, K., 2001. The fetal liver counterpart of
adult common lymphoid progenitors gives rise to all lymphoid
lineages, CD45+CD4+CD3- cells, as well as macrophages. J.
Immunol. Baltim. Md 1950 166, 6593–6601.
Norrmén, C., Ivanov, K.I., Cheng, J., Zangger, N., Delorenzi,
M., Jaquet, M., Miura, N., Puolakkainen, P., Horsley, V., Hu, J.,
Augustin, H.G., Ylä-Herttuala, S., Alitalo, K., Petrova, T.V., 2009.
FOXC2 controls formation and maturation of lymphatic collect-
ing vessels through cooperation with NFATc1. J. Cell Biol. 185,
439–457.
Ohl, L., Henning, G., Krautwald, S., Lipp, M., Hardtke, S., Bern-
hardt, G., Pabst, O., Förster, R., 2003. Cooperating mechanisms of
CXCR5 and CCR7 in development and organization of second-
ary lymphoid organs. J. Exp. Med. 197, 1199–1204.
org/10.1084/jem.20030169
Ohl, L., Mohaupt, M., Czeloth, N., Hintzen, G., Kiafard, Z., Zwirner,
J., Blankenstein, T., Henning, G., Förster, R., 2004. CCR7 Gov-
erns Skin Dendritic Cell Migration under Inflammatory and
Steady-State Conditions. Immunity 21, 279–288.
org/10.1016/j.immuni.2004.06.014
Onder, L., Mörbe, U., Pikor, N., Novkovic, M., Cheng, H.-W., Hehl-
gans, T., Pfeffer, K., Becher, B., Waisman, A., Rülicke, T., Gommer-
man, J., Mueller, C.G., Sawa, S., Scandella, E., Ludewig, B., 2017.
Lymphatic Endothelial Cells Control Initiation of Lymph Node
Organogenesis. Immunity 47, 80-92.e4.
immuni.2017.05.008
Pavert, S.A. van de, Mebius, R.E., 2010. New insights into the de-
velopment of lymphoid tissues. Nat. Rev. Immunol. 10, nri2832.
Petrova, T.V., Karpanen, T., Norrmén, C., Mellor, R., Tamakoshi, T.,
Finegold, D., Ferrell, R., Kerjaschki, D., Mortimer, P., Ylä-Herttua-
la, S., Miura, N., Alitalo, K., 2004. Defective valves and abnormal
mural cell recruitment underlie lymphatic vascular failure in
lymphedema distichiasis. Nat. Med. 10, nm1094.
org/10.1038/nm1094
Phan, T.G., Grigorova, I., Okada, T., Cyster, J.G., 2007. Subcapsular
encounter and complement-dependent transport of immune
complexes by lymph node B cells. Nat. Immunol. 8, 992. https://
doi.org/10.1038/ni1494
Rantakari, P., Auvinen, K., Jäppinen, N., Kapraali, M., Valtonen,
J., Karikoski, M., Gerke, H., Iftakhar-E-Khuda, I., Keuschnigg, J.,
Umemoto, E., Tohya, K., Miyasaka, M., Elima, K., Jalkanen, S., Sal-
mi, M., 2015. The endothelial protein PLVAP in lymphatics con-
trols the entry of lymphocytes and antigens into lymph nodes.
Nat. Immunol. 16, ni.3101.
Russo, E., Teijeira, A., Vaahtomeri, K., Willrodt, A.-H., Bloch, J.S.,
Nitschké, M., Santambrogio, L., Kerjaschki, D., Sixt, M., Halin, C.,
2016. Intralymphatic CCL21 Promotes Tissue Egress of Dendritic
Cells through Afferent Lymphatic Vessels. Cell Rep. 14, 1723–
1734.
Sabine, A., Bovay, E., Demir, C.S., Kimura, W., Jaquet, M.,
Agalarov, Y., Zangger, N., Scallan, J.P., Graber, W., Gulpinar, E.,
Kwak, B.R., Mäkinen, T., Martinez-Corral, I., Ortega, S., Deloren-
zi, M., Kiefer, F., Davis, M.J., Djonov, V., Miura, N., Petrova, T.V.,
2015. FOXC2 and fluid shear stress stabilize postnatal lym-
phatic vasculature. J. Clin. Invest. 125, 3861–3877.
.
org/10.1172/JCI80454
Starling, E.H., 1896. On the Absorption of Fluids from the Con-
nective Tissue Spaces. J. Physiol. 19, 312–326.
Tewalt, E.F., Cohen, J.N., Rouhani, S.J., Guidi, C.J., Qiao, H., Fahl,
S.P., Conaway, M.R., Bender, T.P., Tung, K.S., Vella, A.T., Adler,
A.J., Chen, L., Engelhard, V.H., 2012. Lymphatic endothelial cells
induce tolerance via PD-L1 and lack of costimulation leading to
high-level PD-1 expression on CD8 T cells. Blood 120, 4772–
4782.
1...,18,19,20,21,22,23,24,25,26,27 29,30,31,32,33,34,35,36,37,38,...39
Powered by FlippingBook