Cell News 04/2019
          
        
        
          28
        
        
          
            PRIZE WINNERS 2019
          
        
        
          Romera-Hernandez, M., Bénézech, C., Li, Z., Eckly, A., Coles,
        
        
          M.C., Rot, A., Yagita, H., Léon, C., Ludewig, B., Cupedo, T., Lanza,
        
        
          F., Mueller, C.G., 2016. Integrin-Alpha IIb Identifies Murine
        
        
          Lymph Node Lymphatic Endothelial Cells Responsive to RANKL.
        
        
          PLOS ONE 11, e0151848. 
        
        
        
          pone.0151848
        
        
          Debes, G.F., Arnold, C.N., Young, A.J., Krautwald, S., Lipp, M.,
        
        
          Hay, J.B., Butcher, E.C., 2005. Chemokine receptor CCR7 required
        
        
          for T lymphocyte exit from peripheral tissues. Nat. Immunol. 6,
        
        
          889–894.
        
        
        
          Förster, R., Mattis, A.E., Kremmer, E., Wolf, E., Brem, G., Lipp,
        
        
          M., 1996. A Putative Chemokine Receptor, BLR1, Directs B Cell
        
        
          Migration to Defined Lymphoid Organs and Specific Anatomic
        
        
          Compartments of the Spleen. Cell 87, 1037–1047. 
        
        
        
          .
        
        
          org/10.1016/S0092-8674(00)81798-5
        
        
          Honda, K., Nakano, H., Yoshida, H., Nishikawa, S., Rennert, P.,
        
        
          Ikuta, K., Tamechika, M., Yamaguchi, K., Fukumoto, T., Chiba, T.,
        
        
          Nishikawa, S.-I., 2001. Molecular Basis for Hematopoietic/Mes-
        
        
          enchymal Interaction during Initiation of Peyer’s Patch Organ-
        
        
          ogenesis. J. Exp. Med. 193, 621–630. 
        
        
        
          /
        
        
          jem.193.5.621
        
        
          Junt, T., Moseman, E.A., Iannacone, M., Massberg, S., Lang, P.A.,
        
        
          Boes, M., Fink, K., Henrickson, S.E., Shayakhmetov, D.M., Di Paolo,
        
        
          N.C., van Rooijen, N., Mempel, T.R., Whelan, S.P., von Andrian,
        
        
          U.H., 2007. Subcapsular sinus macrophages in lymph nodes
        
        
          clear lymph-borne viruses and present them to antiviral B cells.
        
        
          Nature 450, 110–114. 
        
        
        
          Lindblom, P., Gerhardt, H., Liebner, S., Abramsson, A., Enge, M.,
        
        
          Hellström, M., Bäckström, G., Fredriksson, S., Landegren, U.,
        
        
          Nyström, H.C., Bergström, G., Dejana, E., Östman, A., Lindahl, P.,
        
        
          Betsholtz, C., 2003. Endothelial PDGF-B retention is required for
        
        
          proper investment of pericytes in the microvessel wall. Genes
        
        
          Dev. 17, 1835–1840.
        
        
        
          Lund, A.W., Duraes, F.V., Hirosue, S., Raghavan, V.R., Nembrini,
        
        
          C., Thomas, S.N., Issa, A., Hugues, S., Swartz, M.A., 2012. VEGF-C
        
        
          Promotes Immune Tolerance in B16 Melanomas and Cross-Pre-
        
        
          sentation of Tumor Antigen by Lymph Node Lymphatics. Cell
        
        
          Rep. 1, 191–199. 
        
        
        
          Luther, S.A., Ansel, K.M., Cyster, J.G., 2003. Overlapping roles of
        
        
          CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph
        
        
          node development. J. Exp. Med. 197, 1191–1198. 
        
        
        
          org/10.1084/jem.20021294
        
        
          Mebius, R.E., Miyamoto, T., Christensen, J., Domen, J., Cupedo,
        
        
          T., Weissman, I.L., Akashi, K., 2001. The fetal liver counterpart of
        
        
          adult common lymphoid progenitors gives rise to all lymphoid
        
        
          lineages, CD45+CD4+CD3- cells, as well as macrophages. J.
        
        
          Immunol. Baltim. Md 1950 166, 6593–6601.
        
        
          Norrmén, C., Ivanov, K.I., Cheng, J., Zangger, N., Delorenzi,
        
        
          M., Jaquet, M., Miura, N., Puolakkainen, P., Horsley, V., Hu, J.,
        
        
          Augustin, H.G., Ylä-Herttuala, S., Alitalo, K., Petrova, T.V., 2009.
        
        
          FOXC2 controls formation and maturation of lymphatic collect-
        
        
          ing vessels through cooperation with NFATc1. J. Cell Biol. 185,
        
        
          439–457. 
        
        
        
          Ohl, L., Henning, G., Krautwald, S., Lipp, M., Hardtke, S., Bern-
        
        
          hardt, G., Pabst, O., Förster, R., 2003. Cooperating mechanisms of
        
        
          CXCR5 and CCR7 in development and organization of second-
        
        
          ary lymphoid organs. J. Exp. Med. 197, 1199–1204. 
        
        
        
          org/10.1084/jem.20030169
        
        
          Ohl, L., Mohaupt, M., Czeloth, N., Hintzen, G., Kiafard, Z., Zwirner,
        
        
          J., Blankenstein, T., Henning, G., Förster, R., 2004. CCR7 Gov-
        
        
          erns Skin Dendritic Cell Migration under Inflammatory and
        
        
          Steady-State Conditions. Immunity 21, 279–288. 
        
        
        
          org/10.1016/j.immuni.2004.06.014
        
        
          Onder, L., Mörbe, U., Pikor, N., Novkovic, M., Cheng, H.-W., Hehl-
        
        
          gans, T., Pfeffer, K., Becher, B., Waisman, A., Rülicke, T., Gommer-
        
        
          man, J., Mueller, C.G., Sawa, S., Scandella, E., Ludewig, B., 2017.
        
        
          Lymphatic Endothelial Cells Control Initiation of Lymph Node
        
        
          Organogenesis. Immunity 47, 80-92.e4. 
        
        
        
          immuni.2017.05.008
        
        
          Pavert, S.A. van de, Mebius, R.E., 2010. New insights into the de-
        
        
          velopment of lymphoid tissues. Nat. Rev. Immunol. 10, nri2832.
        
        
        
          Petrova, T.V., Karpanen, T., Norrmén, C., Mellor, R., Tamakoshi, T.,
        
        
          Finegold, D., Ferrell, R., Kerjaschki, D., Mortimer, P., Ylä-Herttua-
        
        
          la, S., Miura, N., Alitalo, K., 2004. Defective valves and abnormal
        
        
          mural cell recruitment underlie lymphatic vascular failure in
        
        
          lymphedema distichiasis. Nat. Med. 10, nm1094. 
        
        
        
          org/10.1038/nm1094
        
        
          Phan, T.G., Grigorova, I., Okada, T., Cyster, J.G., 2007. Subcapsular
        
        
          encounter and complement-dependent transport of immune
        
        
          complexes by lymph node B cells. Nat. Immunol. 8, 992. https://
        
        
          doi.org/10.1038/ni1494
        
        
          Rantakari, P., Auvinen, K., Jäppinen, N., Kapraali, M., Valtonen,
        
        
          J., Karikoski, M., Gerke, H., Iftakhar-E-Khuda, I., Keuschnigg, J.,
        
        
          Umemoto, E., Tohya, K., Miyasaka, M., Elima, K., Jalkanen, S., Sal-
        
        
          mi, M., 2015. The endothelial protein PLVAP in lymphatics con-
        
        
          trols the entry of lymphocytes and antigens into lymph nodes.
        
        
          Nat. Immunol. 16, ni.3101. 
        
        
        
          Russo, E., Teijeira, A., Vaahtomeri, K., Willrodt, A.-H., Bloch, J.S.,
        
        
          Nitschké, M., Santambrogio, L., Kerjaschki, D., Sixt, M., Halin, C.,
        
        
          2016. Intralymphatic CCL21 Promotes Tissue Egress of Dendritic
        
        
          Cells through Afferent Lymphatic Vessels. Cell Rep. 14, 1723–
        
        
          1734.
        
        
        
          Sabine, A., Bovay, E., Demir, C.S., Kimura, W., Jaquet, M.,
        
        
          Agalarov, Y., Zangger, N., Scallan, J.P., Graber, W., Gulpinar, E.,
        
        
          Kwak, B.R., Mäkinen, T., Martinez-Corral, I., Ortega, S., Deloren-
        
        
          zi, M., Kiefer, F., Davis, M.J., Djonov, V., Miura, N., Petrova, T.V.,
        
        
          2015. FOXC2 and fluid shear stress stabilize postnatal lym-
        
        
          phatic vasculature. J. Clin. Invest. 125, 3861–3877.
        
        
        
          .
        
        
          org/10.1172/JCI80454
        
        
          Starling, E.H., 1896. On the Absorption of Fluids from the Con-
        
        
          nective Tissue Spaces. J. Physiol. 19, 312–326.
        
        
          Tewalt, E.F., Cohen, J.N., Rouhani, S.J., Guidi, C.J., Qiao, H., Fahl,
        
        
          S.P., Conaway, M.R., Bender, T.P., Tung, K.S., Vella, A.T., Adler,
        
        
          A.J., Chen, L., Engelhard, V.H., 2012. Lymphatic endothelial cells
        
        
          induce tolerance via PD-L1 and lack of costimulation leading to
        
        
          high-level PD-1 expression on CD8 T cells. Blood 120, 4772–
        
        
          4782.