Cell News 2/2014
          
        
        
          22
        
        
          As the nuclear envelope is connected to all cytoskeletal fila-
        
        
          ment systems, which in are turn linked to the plasma mem-
        
        
          brane, Cavalier-Smith has suggested that "lamins and the in-
        
        
          termediate filament protein family as a whole have evolved
        
        
          in the ancestral animal (sponge) to increase the mechanical
        
        
          strength of the giant oocyte nucleus when the ancestor of ani-
        
        
          mals evolved oogamy" and that "the mechanical robustness of
        
        
          the lamina may have made it essential for it to be reversibly
        
        
          disassembled at mitosis" (Cavalier-Smith, 2010). Thus he pro-
        
        
          posed that open mitosis has coevolved with the lamina in the
        
        
          ancestral animal. However, we now know that lamins (NE81)
        
        
          are already present in Dictyostelidae, i.e. amoebozoans. Since,
        
        
          Dictyostelium has a more closed type of mitosis, comparable to
        
        
          fungi such as Aspergillus (De Souza and Osmani, 2007), which
        
        
          clearly possess no lamins, these two issues are not likely to be
        
        
          interlinked. Dictyostelium most likely has solved the problem
        
        
          to soften the nuclear envelope in order to allow karyokinesis
        
        
          by disassembly of NE81 networks while disassembled NE81 still
        
        
          stays associated with the nuclear envelope through its prenyl
        
        
          anchor (Krüger et al., 2012).
        
        
          
            Outlook
          
        
        
          Further clarification of the evolution of the nuclear envelope
        
        
          and centrosomes will arise from further analyses of nuclear
        
        
          envelope proteins interacting with the nuclear lamina in vari-
        
        
          ous organisms and functional characterization of further cen-
        
        
          trosomal proteins in organisms with acentriolar centrosomes.
        
        
          Of special interest in this respect is the acellular slime mold
        
        
          Physarum polycephalum. It exists in different life forms, inclu-
        
        
          ding an amoeboid form with centriole-containing centrosomes
        
        
          and an open mitosis and syncycial plasmodia with acentriolar
        
        
          MTOCs and a closed mitosis (Tanaka, 1973; Wright et al., 1988;
        
        
          Solnica Krezel et al., 1991). Theoretically this allows compara-
        
        
          tive cell biology within one organism especially if the ongoing,
        
        
          difficult Physarum genome project will be finished (Glöckner
        
        
          et al., 2008).
        
        
          
            References
          
        
        
          Adl, S.M., Simpson, A.G., Lane, C.E., Lukes, J., Bass, D., Bowser, S.S., Brown, M.W., Burki, F.,
        
        
          Dunthorn, M., Hampl, V., Heiss, A., Hoppenrath, M., Lara, E., Le Gall, L., Lynn, D.H., McManus,
        
        
          H., Mitchell, E.A., Mozley-Stanridge, S.E., Parfrey, L.W., Pawlowski, J., Rueckert, S., Shadwick,
        
        
          R.S., Schoch, C.L., Smirnov, A., and Spiegel, F.W. (2012). The revised classification of eukary-
        
        
          otes. The Journal of eukaryotic microbiology 59, 429-493.
        
        
          Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., Ohkuma, Y.,
        
        
          and Hanaoka, F. (2001). Centrosome protein centrin 2/caltractin 1 is part of the xeroderma
        
        
          pigmentosum group C complex that initiates global genome nucleotide excision repair. J.
        
        
          Biol. Chem. 276, 18665-18672.
        
        
          Basto, R., Lau, J., Vinogradova, T., Gardiol, A., Woods, C.G., Khodjakov, A., and Raff, J.W.
        
        
          (2006). Flies without centrioles. Cell 125, 1375-1386.
        
        
          Batsios, P., Peter, T., Baumann, O., Stick, R., Meyer, I., and Gräf, R. (2012). A lamin in lower
        
        
          eukaryotes? Nucleus 3, 237-243.
        
        
          Bornens, M., and Azimzadeh, J. (2007). Origin and evolution of the centrosome. Adv Exp
        
        
          Med Biol 607, 119-129.
        
        
          Carvalho-Santos, Z., Azimzadeh, J., Pereira-Leal, J.B., and Bettencourt-Dias, M. (2011). Evo-
        
        
          lution: Tracing the origins of centrioles, cilia, and flagella. The Journal of cell biology 194,
        
        
          165-175.
        
        
          Carvalho-Santos, Z., Machado, P., Branco, P., Tavares-Cadete, F., Rodrigues-Martins, A.,
        
        
          Pereira-Leal, J.B., and Bettencourt-Dias, M. (2010). Stepwise evolution of the centriole-
        
        
          assembly pathway. Journal of cell science 123, 1414-1426.
        
        
          Cavalier-Smith, T. (2010). Origin of the cell nucleus, mitosis and sex: roles of intracellular
        
        
          coevolution. Biol Direct 5, 7.
        
        
          Ciska, M., Masuda, K., and Moreno Diaz de la Espina, S. (2013). Lamin-like analogues in
        
        
          plants: the characterization of NMCP1 in Allium cepa. Journal of experimental botany 64,
        
        
          1553-1564.
        
        
          Crisp, M., Liu, Q., Roux, K., Rattner, J.B., Shanahan, C., Burke, B., Stahl, P.D., and Hodzic, D.
        
        
          (2006). Coupling of the nucleus and cytoplasm: role of the LINC complex. The Journal of
        
        
          cell biology 172, 41-53.
        
        
          Dahl, K.N., Kahn, S.M., Wilson, K.L., and Discher, D.E. (2004). The nuclear envelope lamina
        
        
          network has elasticity and a compressibility limit suggestive of a molecular shock absorber.
        
        
          J. Cell Sci. 117, 4779-4786.
        
        
          Dantas, T.J., Daly, O.M., and Morrison, C.G. (2012). Such small hands: the roles of centrins/
        
        
          caltractins in the centriole and in genome maintenance. Cellular and molecular life scien-
        
        
          ces : CMLS 69, 2979-2997.
        
        
          Daunderer, C., Schliwa, M., and Gräf, R. (2001). Dictyostelium centrin-related protein
        
        
          (DdCrp), the most divergent member of the centrin family, possesses only two EF hands and
        
        
          dissociates from the centrosome during mitosis. Eur. J. Cell Biol. 80, 621-630.
        
        
          De Souza, C.P., and Osmani, S.A. (2007). Mitosis, not just open or closed. Eukaryot Cell 6,
        
        
          1521-1527.
        
        
          Debec, A., Sullivan, W., and Bettencourt-Dias, M. (2010). Centrioles: active players or pas-
        
        
          sengers during mitosis? Cellular and molecular life sciences : CMLS 67, 2173-2194.
        
        
          Devos, D.P., Gräf, R., and Field, M.C. (2014). Evolution of the nucleus. Current opinion in
        
        
          cell biology 28C, 8-15.
        
        
          Ding, R., West, R.R., Morphew, M., Oakley, B.R., and McIntosh, J.R. (1997). The spindle pole
        
        
          body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell
        
        
          cycle proceeds. Mol. Biol. Cell 8, 1461-1479.
        
        
          DuBois, K.N., Alsford, S., Holden, J.M., Buisson, J., Swiderski, M., Bart, J.M., Ratushny, A.V.,
        
        
          Wan, Y., Bastin, P., Barry, J.D., Navarro, M., Horn, D., Aitchison, J.D., Rout, M.P., and Field,
        
        
          M.C. (2012). NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with la-
        
        
          min-like functions. PLoS biology 10, e1001287.
        
        
          Field, M.C., Horn, D., Alsford, S., Koreny, L., and Rout, M.P. (2012). Telomeres, tethers and
        
        
          trypanosomes. Nucleus 3, 478-486.
        
        
          Fong, K.W., Choi, Y.K., Rattner, J.B., and Qi, R.Z. (2008). CDK5RAP2 Is a Pericentriolar Protein
        
        
          That Functions in Centrosomal Attachment of the {gamma}-Tubulin Ring Complex. Mol.
        
        
          Biol. Cell 19, 115-125.
        
        
          Friedländer, M., and Wahrman, J. (1970). The spindle as a basal body distributor. A study
        
        
          in the meiosis of the male silkworm moth, Bombyx mori. Journal of cell science 7, 65-89.
        
        
          Glöckner, G., Golderer, G., Werner-Felmayer, G., Meyer, S., and Marwan, W. (2008). A first
        
        
          glimpse at the transcriptome of Physarum polycephalum. BMC genomics 9, 6.
        
        
          Graumann, K. (2014). Evidence for LINC1-SUN associations at the plant nuclear periphery.
        
        
          PloS one 9, e93406.
        
        
          Haque, F., Lloyd, D.J., Smallwood, D.T., Dent, C.L., Shanahan, C.M., Fry, A.M., Trembath, R.C.,
        
        
          and Shackleton, S. (2006). SUN1 interacts with nuclear lamin A and cytoplasmic nesprins
        
        
          to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol.
        
        
          Cell Biol. 26, 3738-3751.
        
        
          Hartman, H., and Fedorov, A. (2002). The origin of the eukaryotic cell: a genomic investi-
        
        
          gation. Proceedings of the National Academy of Sciences of the United States of America
        
        
          99, 1420-1425.
        
        
          Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V., and Aebi, U. (2007). Intermediate filaments:
        
        
          from cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 8, 562-573.
        
        
          Hodges, M.E., Scheumann, N., Wickstead, B., Langdale, J.A., and Gull, K. (2010). Reconst-
        
        
          ructing the evolutionary history of the centriole from protein components. J. Cell Sci. 123,
        
        
          1407-1413.
        
        
          Kaller, M., Euteneuer, U., and Nellen, W. (2006). Differential effects of heterochromatin
        
        
          protein 1 isoforms on mitotic chromosome distribution and growth in Dictyostelium disco-
        
        
          ideum. Eukaryot. Cell 5, 530-543.
        
        
          Khodjakov, A., Cole, R.W., Oakley, B.R., and Rieder, C.L. (2000). Centrosome-independent
        
        
          mitotic spindle formation in vertebrates. Curr. Biol. 10, 59-67 FTXT: SwetsNet (European
        
        
          Mirror) SwetsNet (US Mirror).
        
        
          Khodjakov, A., and Rieder, C.L. (2001). Centrosomes enhance the fidelity of cytokinesis in
        
        
          vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237-242.
        
        
          Kim, S., and Dynlacht, B.D. (2013). Assembling a primary cilium. Current opinion in cell
        
        
          biology 25, 506-511.
        
        
          King, M.C., Drivas, T.G., and Blobel, G. (2008). A network of nuclear envelope membrane
        
        
          proteins linking centromeres to microtubules. Cell 134, 427-438.
        
        
          Krüger, A., Batsios, P., Baumann, O., Luckert, E., Schwarz, H., Stick, R., Meyer, I., and Gräf, R.
        
        
          (2012). Characterization of NE81, the first lamin-like nucleoskeleton protein in a unicellular
        
        
          organism. Mol. Biol. Cell 23, 360-370.
        
        
          Kuhnert, O., Baumann, O., Meyer, I., and Gräf, R. (2012). Functional characterization of
        
        
          CP148, a novel key component for centrosome integrity in Dictyostelium. Cellular and mo-
        
        
          lecular life sciences : CMLS 69, 1875-1888.
        
        
          Li, S., Sandercock, A.M., Conduit, P., Robinson, C.V., Williams, R.L., and Kilmartin, J.V. (2006).
        
        
          Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication.
        
        
          The Journal of cell biology 173, 867-877.
        
        
          Lucas, E.P., and Raff, J.W. (2007). Maintaining the proper connection between the centrioles
        
        
          and the pericentriolar matrix requires Drosophila centrosomin. J. Cell Biol. 178, 725-732.
        
        
          Mana-Capelli, S., Gräf, R., and Larochelle, D.A. (2009). Dictyostelium discoideum CenB is
        
        
          a bona fide centrin essential for nuclear architecture and centrosome stability. Eukaryot.
        
        
          
            Research news