Cell News 2/2014
22
As the nuclear envelope is connected to all cytoskeletal fila-
ment systems, which in are turn linked to the plasma mem-
brane, Cavalier-Smith has suggested that "lamins and the in-
termediate filament protein family as a whole have evolved
in the ancestral animal (sponge) to increase the mechanical
strength of the giant oocyte nucleus when the ancestor of ani-
mals evolved oogamy" and that "the mechanical robustness of
the lamina may have made it essential for it to be reversibly
disassembled at mitosis" (Cavalier-Smith, 2010). Thus he pro-
posed that open mitosis has coevolved with the lamina in the
ancestral animal. However, we now know that lamins (NE81)
are already present in Dictyostelidae, i.e. amoebozoans. Since,
Dictyostelium has a more closed type of mitosis, comparable to
fungi such as Aspergillus (De Souza and Osmani, 2007), which
clearly possess no lamins, these two issues are not likely to be
interlinked. Dictyostelium most likely has solved the problem
to soften the nuclear envelope in order to allow karyokinesis
by disassembly of NE81 networks while disassembled NE81 still
stays associated with the nuclear envelope through its prenyl
anchor (Krüger et al., 2012).
Outlook
Further clarification of the evolution of the nuclear envelope
and centrosomes will arise from further analyses of nuclear
envelope proteins interacting with the nuclear lamina in vari-
ous organisms and functional characterization of further cen-
trosomal proteins in organisms with acentriolar centrosomes.
Of special interest in this respect is the acellular slime mold
Physarum polycephalum. It exists in different life forms, inclu-
ding an amoeboid form with centriole-containing centrosomes
and an open mitosis and syncycial plasmodia with acentriolar
MTOCs and a closed mitosis (Tanaka, 1973; Wright et al., 1988;
Solnica Krezel et al., 1991). Theoretically this allows compara-
tive cell biology within one organism especially if the ongoing,
difficult Physarum genome project will be finished (Glöckner
et al., 2008).
References
Adl, S.M., Simpson, A.G., Lane, C.E., Lukes, J., Bass, D., Bowser, S.S., Brown, M.W., Burki, F.,
Dunthorn, M., Hampl, V., Heiss, A., Hoppenrath, M., Lara, E., Le Gall, L., Lynn, D.H., McManus,
H., Mitchell, E.A., Mozley-Stanridge, S.E., Parfrey, L.W., Pawlowski, J., Rueckert, S., Shadwick,
R.S., Schoch, C.L., Smirnov, A., and Spiegel, F.W. (2012). The revised classification of eukary-
otes. The Journal of eukaryotic microbiology 59, 429-493.
Araki, M., Masutani, C., Takemura, M., Uchida, A., Sugasawa, K., Kondoh, J., Ohkuma, Y.,
and Hanaoka, F. (2001). Centrosome protein centrin 2/caltractin 1 is part of the xeroderma
pigmentosum group C complex that initiates global genome nucleotide excision repair. J.
Biol. Chem. 276, 18665-18672.
Basto, R., Lau, J., Vinogradova, T., Gardiol, A., Woods, C.G., Khodjakov, A., and Raff, J.W.
(2006). Flies without centrioles. Cell 125, 1375-1386.
Batsios, P., Peter, T., Baumann, O., Stick, R., Meyer, I., and Gräf, R. (2012). A lamin in lower
eukaryotes? Nucleus 3, 237-243.
Bornens, M., and Azimzadeh, J. (2007). Origin and evolution of the centrosome. Adv Exp
Med Biol 607, 119-129.
Carvalho-Santos, Z., Azimzadeh, J., Pereira-Leal, J.B., and Bettencourt-Dias, M. (2011). Evo-
lution: Tracing the origins of centrioles, cilia, and flagella. The Journal of cell biology 194,
165-175.
Carvalho-Santos, Z., Machado, P., Branco, P., Tavares-Cadete, F., Rodrigues-Martins, A.,
Pereira-Leal, J.B., and Bettencourt-Dias, M. (2010). Stepwise evolution of the centriole-
assembly pathway. Journal of cell science 123, 1414-1426.
Cavalier-Smith, T. (2010). Origin of the cell nucleus, mitosis and sex: roles of intracellular
coevolution. Biol Direct 5, 7.
Ciska, M., Masuda, K., and Moreno Diaz de la Espina, S. (2013). Lamin-like analogues in
plants: the characterization of NMCP1 in Allium cepa. Journal of experimental botany 64,
1553-1564.
Crisp, M., Liu, Q., Roux, K., Rattner, J.B., Shanahan, C., Burke, B., Stahl, P.D., and Hodzic, D.
(2006). Coupling of the nucleus and cytoplasm: role of the LINC complex. The Journal of
cell biology 172, 41-53.
Dahl, K.N., Kahn, S.M., Wilson, K.L., and Discher, D.E. (2004). The nuclear envelope lamina
network has elasticity and a compressibility limit suggestive of a molecular shock absorber.
J. Cell Sci. 117, 4779-4786.
Dantas, T.J., Daly, O.M., and Morrison, C.G. (2012). Such small hands: the roles of centrins/
caltractins in the centriole and in genome maintenance. Cellular and molecular life scien-
ces : CMLS 69, 2979-2997.
Daunderer, C., Schliwa, M., and Gräf, R. (2001). Dictyostelium centrin-related protein
(DdCrp), the most divergent member of the centrin family, possesses only two EF hands and
dissociates from the centrosome during mitosis. Eur. J. Cell Biol. 80, 621-630.
De Souza, C.P., and Osmani, S.A. (2007). Mitosis, not just open or closed. Eukaryot Cell 6,
1521-1527.
Debec, A., Sullivan, W., and Bettencourt-Dias, M. (2010). Centrioles: active players or pas-
sengers during mitosis? Cellular and molecular life sciences : CMLS 67, 2173-2194.
Devos, D.P., Gräf, R., and Field, M.C. (2014). Evolution of the nucleus. Current opinion in
cell biology 28C, 8-15.
Ding, R., West, R.R., Morphew, M., Oakley, B.R., and McIntosh, J.R. (1997). The spindle pole
body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell
cycle proceeds. Mol. Biol. Cell 8, 1461-1479.
DuBois, K.N., Alsford, S., Holden, J.M., Buisson, J., Swiderski, M., Bart, J.M., Ratushny, A.V.,
Wan, Y., Bastin, P., Barry, J.D., Navarro, M., Horn, D., Aitchison, J.D., Rout, M.P., and Field,
M.C. (2012). NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with la-
min-like functions. PLoS biology 10, e1001287.
Field, M.C., Horn, D., Alsford, S., Koreny, L., and Rout, M.P. (2012). Telomeres, tethers and
trypanosomes. Nucleus 3, 478-486.
Fong, K.W., Choi, Y.K., Rattner, J.B., and Qi, R.Z. (2008). CDK5RAP2 Is a Pericentriolar Protein
That Functions in Centrosomal Attachment of the {gamma}-Tubulin Ring Complex. Mol.
Biol. Cell 19, 115-125.
Friedländer, M., and Wahrman, J. (1970). The spindle as a basal body distributor. A study
in the meiosis of the male silkworm moth, Bombyx mori. Journal of cell science 7, 65-89.
Glöckner, G., Golderer, G., Werner-Felmayer, G., Meyer, S., and Marwan, W. (2008). A first
glimpse at the transcriptome of Physarum polycephalum. BMC genomics 9, 6.
Graumann, K. (2014). Evidence for LINC1-SUN associations at the plant nuclear periphery.
PloS one 9, e93406.
Haque, F., Lloyd, D.J., Smallwood, D.T., Dent, C.L., Shanahan, C.M., Fry, A.M., Trembath, R.C.,
and Shackleton, S. (2006). SUN1 interacts with nuclear lamin A and cytoplasmic nesprins
to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol.
Cell Biol. 26, 3738-3751.
Hartman, H., and Fedorov, A. (2002). The origin of the eukaryotic cell: a genomic investi-
gation. Proceedings of the National Academy of Sciences of the United States of America
99, 1420-1425.
Herrmann, H., Bar, H., Kreplak, L., Strelkov, S.V., and Aebi, U. (2007). Intermediate filaments:
from cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 8, 562-573.
Hodges, M.E., Scheumann, N., Wickstead, B., Langdale, J.A., and Gull, K. (2010). Reconst-
ructing the evolutionary history of the centriole from protein components. J. Cell Sci. 123,
1407-1413.
Kaller, M., Euteneuer, U., and Nellen, W. (2006). Differential effects of heterochromatin
protein 1 isoforms on mitotic chromosome distribution and growth in Dictyostelium disco-
ideum. Eukaryot. Cell 5, 530-543.
Khodjakov, A., Cole, R.W., Oakley, B.R., and Rieder, C.L. (2000). Centrosome-independent
mitotic spindle formation in vertebrates. Curr. Biol. 10, 59-67 FTXT: SwetsNet (European
Mirror) SwetsNet (US Mirror).
Khodjakov, A., and Rieder, C.L. (2001). Centrosomes enhance the fidelity of cytokinesis in
vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237-242.
Kim, S., and Dynlacht, B.D. (2013). Assembling a primary cilium. Current opinion in cell
biology 25, 506-511.
King, M.C., Drivas, T.G., and Blobel, G. (2008). A network of nuclear envelope membrane
proteins linking centromeres to microtubules. Cell 134, 427-438.
Krüger, A., Batsios, P., Baumann, O., Luckert, E., Schwarz, H., Stick, R., Meyer, I., and Gräf, R.
(2012). Characterization of NE81, the first lamin-like nucleoskeleton protein in a unicellular
organism. Mol. Biol. Cell 23, 360-370.
Kuhnert, O., Baumann, O., Meyer, I., and Gräf, R. (2012). Functional characterization of
CP148, a novel key component for centrosome integrity in Dictyostelium. Cellular and mo-
lecular life sciences : CMLS 69, 1875-1888.
Li, S., Sandercock, A.M., Conduit, P., Robinson, C.V., Williams, R.L., and Kilmartin, J.V. (2006).
Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication.
The Journal of cell biology 173, 867-877.
Lucas, E.P., and Raff, J.W. (2007). Maintaining the proper connection between the centrioles
and the pericentriolar matrix requires Drosophila centrosomin. J. Cell Biol. 178, 725-732.
Mana-Capelli, S., Gräf, R., and Larochelle, D.A. (2009). Dictyostelium discoideum CenB is
a bona fide centrin essential for nuclear architecture and centrosome stability. Eukaryot.
Research news