cell news 2/2013
9
‘cable-constriction’ versus a ‘fow-friction’ motor in the context
of their biological function. In the case of epiboly, a geometry-
independent crawling type of ‘fow-friction’ is advantageous,
because it contributes to the epiboly movement even before the
ring has reached the equator. On the contrary for cytokinesis,
while friction-resisted fows along the width of the ring could
play a role in the positioning of the ring or its assembly (37-
39) cable-constriction along the circumference is needed for its
main task to physically divide the cell.
To conclude, the study discussed here highlights the importance
of identifying and understanding the biophysical material laws
by which actomyosin-based fow and deformation of cells and
tissues arise. These laws will provide us with the relevant coarse-
grained and mesoscale biophysical parameters which determine
large-scale dynamics, and only they will allow us to understand
how particular morphogenetic processes arise and proceed.
Therefore, an essential task for the future is to understand how
the relevant physical properties emerge from molecular activities
within the actomyosin cortex.
Acknowledgements
We are indebted to Carl-Philipp Heisenberg and Guillaume Salbreux for a fruitful and exci-
ting collaboration. We express our gratitude to all present and past members of the Grill and
Heisenberg lab, as well as colleagues and scientifc service units at MPI-CBG and IST Austria.
We thank Carl-Philipp Heisenberg for comments on earlier versions of the manuscript. S.W.G
acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG) and the European
Research Council (ERC).
References
1. T. D. Pollard, R. R. Weihing (1974) Actin and myosin and cell movement., Crit Rev Biochem
Mol 2:1–65 .
2. P. E. P. Young, T. C. T. Pesacreta, D. P. D. Kiehart (1990) Dynamic changes in the distribution
of cytoplasmic myosin during Drosophila embryogenesis, Development 111:1–14.
3. D. Bray, J. G. White (1988) Cortical fow in animal cells, Science 239:883–888.
4. G. T. Charras, C. K. Hu, M. Coughlin, T. J. Mitchison (2006) Reassembly of contractile actin
cortex in cell blebs, J Cell Biol 175:477–490.
5. G. Salbreux, G. Charras, E. Paluch (2012) Actin cortex mechanics and cellular morphogene-
sis, Trends Cell Biol 22:536–545.
6. P. J. Keller (2013) Imaging morphogenesis: technological advances and biological insights,
Science 340:1234168. DOI: 10.1126/science.1234168
7. C.-P. Heisenberg, Y. Bellaiche (2013) Forces in tissue morphogenesis and patterning, Cell
153:948–962.
8. R. Levayer, T. Lecuit (2012) Biomechanical regulation of contractility: spatial control and
dynamics, Trends Cell Biol 22:61–81.
9. M. Rauzi, P. Verant, T. Lecuit, P.-F. Lenne (2008) Nature and anisotropy of cortical forces
orienting Drosophila tissue morphogenesis, Nat Cell Biol 10:1401–1410.
10. J. L. Maitre et al. (2012) Adhesion functions in cell sorting by mechanically coupling the
cortices of adhering cells, Science 338:253–256.
11. M. Mayer, M. Depken, J. S. Bois, F. Jülicher, S. W. Grill (2010) Anisotropies in cortical tensi-
on reveal the physical basis of polarizing cortical fows, Nature 467:617–621.
12. G. Salbreux, J. Prost, J. Joanny (2009) Hydrodynamics of cellular cortical fows and the
formation of contractile rings, Phys Rev Lett 103:058102.
13. A. C. Martin, M. Kaschube, E. F. Wieschaus (2009) Pulsed contractions of an actin-myosin
network drive apical constriction, Nature 457:495–501.
14. M. Roh-Johnson et al. (2012) Triggering a cell shape change by exploiting preexisting
actomyosin contractions, Science 335:1232–1235.
15. M. Behrndt, G. Salbreux et al. (2012) Forces driving epithelial spreading in zebrafsh gas-
trulation, Science 338:257–260.
16. A. F. Schier, W. S. Talbot (2004) Molecular genetics of axis formation in zebrafsh, Annu
Rev Genet 39:561–613.
17. M. Köppen, B. G. Fernández, L. Carvalho, A. Jacinto, C.-P. Heisenberg (2006) Coordinated
cell-shape changes control epithelial movement in zebrafsh and Drosophila, Development
133, 2671–2681.
18. S. E. Lepage, A. E. E. Bruce (2010) Zebrafsh epiboly: mechanics and mechanisms, Int J Dev
Biol 54:1213–1228.
19. R. M. Warga, C. B. Kimmel (1990) Cell movements during epiboly and gastrulation in
zebrafsh, Development 108:569–580.
20. S. Song et al. (2013) Pou5f1-dependent EGF expression controls E-cadherin endocytosis,
cell adhesion, and zebrafsh epiboly movements, Dev Cell 24:486–501.
21. D. A. Kane, K. N. McFarland, R. M. Warga (2005) Mutations in half baked/E-cadherin block
cell behaviors that are necessary for teleost epiboly, Development 132:1105–1116.
22. E. T. E. Wilson, C. J. C. Cretekos, K. A. K. Helde (1994) Cell mixing during early epiboly in
the zebrafsh embryo, Dev Genet 17:6–15.
23. D. A. Kane et al. (1996) The zebrafsh early arrest mutants, Development 123:57–66 .
24. S. E. Zalik, E. Lewandowski, Z. Kam, B. Geiger (1999) Cell adhesion and the actin cyto-
skeleton of the enveloping layer in the zebrafsh embryo during epiboly, Biochem Cell Biol
77:527–542.
25. J. C. Cheng, A. L. Miller, S. E. Webb (2004) Organization and function of microflaments
during late epiboly in zebrafsh embryos, Dev Dyn 231:313–323.
26. M. Siddiqui, H. Sheikh, C. Tran, A. E. E. Bruce, The tight junction component Claudin E is
required for zebrafsh epiboly, Dev Dyn 239, 715–722 (2010).
27. B. A. Holloway et al. (2009) A novel role for MAPKAPK2 in morphogenesis during zebrafsh
development, PLoS Genet 5:e1000413 .
28. F. A. Barr, U. Gruneberg (2007) Cytokinesis: placing and making the fnal cut, Cell 131,
847–860.
29. J. M. Sawyer et al. (2010) Apical constriction: a cell shape change that can drive morpho-
genesis, Dev Biol 341:5–19.
30. P. Martin, J. Lewis (1992) Actin cables and epidermal movement in embryonic wound
healing, Nature 360:179–183.
31. A. Jacinto, S. Woolner, P. Martin (2002) Dynamic analysis of dorsal closure in Drosophila:
from genetics to cell biology, Dev Cell 3:9–19.
32. M. S. Hutson et al. (2003) Forces for morphogenesis investigated with laser microsurgery
and quantitative modeling, Science 300:145–149.
33. M. Rauzi, P.-F. Lenne, T. Lecuit (2010) Planar polarized actomyosin contractile fows con-
trol epithelial junction remodelling, Nature 468:1110–1114.
34. E. Munro, J. Nance, J. R. Priess (2004) Cortical fows powered by asymmetrical contraction
transport PAR proteins to establish and maintain anterior-posterior polarity in the early C.
elegans embryo, Dev Cell 7:413–424.
35. K. Kruse et al. (2005) Generic theory of active polar gels: a paradigm for cytoskeletal
dynamics, Eur Phys J E 16, 5–16.
36. J. Ranft et al. (2010) Fluidization of tissues by cell division and apoptosis, Proc Natl Acad
Sci USA 107:20863–20868.
37. L. G. Cao, Y.-L. Wang (1990) Mechanism of the formation of contractile ring in dividing
cultured animal cells. II. Cortical movement of microinjected actin flaments, J Cell Biol 111,
1905–1911.
38. R. L. DeBiasio, G. M. LaRocca, P. L. Post, D. L. Taylor (1996) Myosin II transport, organi-
zation, and phosphorylation: evidence for cortical fow/solation-contraction coupling during
cytokinesis and cell locomotion, Mol Biol Cell 7, 1259–1282.
39. J. Huang et al. (2012) Nonmedially assembled F-actin cables incorporate into the acto-
myosin ring in fssion yeast, J Cell Biol 199:831–847.
From left to right: Eugen Kerkhoff, Stephan Grill, Dr. Jens Thielmann,
BINDER Central Services GmbH & Co. KG
For CV see Stephan Grill’s article in Cell News 4/2011 (p. 33)
binder innovation prize