Cell News 04/2019
          
        
        
          12
        
        
          that centrosomal MT dynamics are enhanced, most likely in
        
        
          tumor cells undergoing metastasis-directed EMT. The use of
        
        
          anti-mitotic drugs that target MTs (e.g. taxenes and vinca alka-
        
        
          loids) has proven successful in oncology, yet very often tumors
        
        
          develop resistance to the drugs. Although the reason for this is
        
        
          rather far from being understood, pilot observations indicate
        
        
          that adaptations in MT dynamics (so far mostly by altering
        
        
          the protein levels of Tubulin variants) may play an important
        
        
          role. Our discoveries not only support these observations but
        
        
          also offer knowledge about the possible cellular and molecular
        
        
          mechanism by which cancer cells resist treatment.
        
        
          
            References
          
        
        
          Beckervordersandforth, R., Tripathi, P., Ninkovic, J., Bayam, E.,
        
        
          Lepier, A., Stempfhuber, B., Kirchhoff, F., Hirrlinger, J., Haslinger,
        
        
          A., Lie, D.C., et al. (2010). In vivo fate mapping and expression
        
        
          analysis reveals molecular hallmarks of prospectively isolated
        
        
          adult neural stem cells. Cell stem cell 7, 744-758.
        
        
          Camargo Ortega, G., Falk, S., Johansson, P.A., Peyre, E., Broix,
        
        
          L., Sahu, S.K., Hirst, W., Schlichthaerle, T., De Juan Romero, C.,
        
        
          Draganova, K., et al. (2019). The centrosome protein AKNA reg-
        
        
          ulates neurogenesis via microtubule organization. Nature 567,
        
        
          113–117.
        
        
          Cárdenas, A., and Borrell, V. (2019). Molecular and cellular evo-
        
        
          lution of corticogenesis in amniotes. Cell. Mol. Life Sci.
        
        
          Chen, C., Lee, G.A., Pourmorady, A., Sock, E., and Donoghue, M.J.
        
        
          (2015). Orchestration of Neuronal Differentiation and Progenitor
        
        
          Pool Expansion in the Developing Cortex by SoxC Genes. The
        
        
          Journal of neuroscience 35, 10629-10642.
        
        
          de Juan Romero, C., and Borrell, V. (2017). Genetic maps and
        
        
          patterns of cerebral cortex folding. Current opinion in cell biolo-
        
        
          gy 49, 31-37.
        
        
          Dong, C., Xu, H., Zhang, R., Tanaka, N., Takeichi, M., and Meng,
        
        
          W. (2017). CAMSAP3 accumulates in the pericentrosomal area
        
        
          and accompanies microtubule release from the centrosome via
        
        
          katanin. Journal of cell science 130, 1709-1715.
        
        
          Fernandez, V., Llinares-Benadero, C., and Borrell, V. (2016). Ce-
        
        
          rebral cortex expansion and folding: what have we learned? The
        
        
          EMBO journal 35, 1021-1044.
        
        
          Gascón, S., Murenu, E., Masserdotti, G., Ortega, F., Russo, G.L.,
        
        
          Petrik, D., Deshpande, A., Heinrich, C., Karow, M., Robertson,
        
        
          S.P., et al. (2016). Identification and Successful Negotiation of a
        
        
          Metabolic Checkpoint in Direct Neuronal Reprogramming. Cell
        
        
          Stem Cell 18, 396–409.
        
        
          Falk, S., and Götz, M. (2017). Glial control of neurogenesis. Curr.
        
        
          Opin. Neurobiol. 47, 188–195.
        
        
          Itoh, Y., Moriyama, Y., Hasegawa, T., Endo, T.A., Toyoda, T., and
        
        
          Gotoh, Y. (2013). Scratch regulates neuronal migration onset via
        
        
          an epithelial-mesenchymal transition-like mechanism. Nature
        
        
          neuroscience 16, 416-425.
        
        
          Jakobsen, L., Vanselow, K., Skogs, M., Toyoda, Y., Lundberg, E.,
        
        
          Poser, I., Falkenby, L.G., Bennetzen, M., Westendorf, J., Nigg, E.A.,
        
        
          et al. (2011). Novel asymmetrically localizing components of
        
        
          human centrosomes identified by complementary proteomics
        
        
          methods. EMBO J. 30, 1520–1535.
        
        
          Klyachko, V.A., and Stevens, C.F. (2003). Connectivity optimi-
        
        
          zation and the positioning of cortical areas. Proceedings of the
        
        
          National Academy of Sciences of the United States of America
        
        
          100, 7937-7941.
        
        
          Götz, M., and Huttner, W.B. (2005). The cell biology of neurogen-
        
        
          esis. Nature reviews Molecular cell biology 6, 777-788.
        
        
          Götz, M., Nakafuku, M., and Petrik, D. (2016). Neurogenesis in
        
        
          the Developing and Adult Brain-Similarities and Key Differences.
        
        
          Cold Spring Harbor perspectives in biology 8.
        
        
          Kasioulis, I., Das, R.M., and Storey, K.G. (2017). Inter-dependent
        
        
          apical microtubule and actin dynamics orchestrate centrosome
        
        
          retention and neuronal delamination. eLife 6.
        
        
          Kriegstein, A., and Alvarez-Buylla, A. (2009). The glial nature of
        
        
          embryonic and adult neural stem cells. Annual review of neuro-
        
        
          science 32, 149-184.
        
        
          Lee, C.C., Chen, W.S., Chen, C.C., Chen, L.L., Lin, Y.S., Fan, C.S., and
        
        
          Huang, T.S. (2012). TCF12 protein functions as transcriptional
        
        
          repressor of E-cadherin, and its overexpression is correlated with
        
        
          metastasis of colorectal cancer. J. Biol. Chem. 287, 2798–2809.
        
        
          Masserdotti, G., Gillotin, S., Sutor, B., Drechsel, D., Irmler, M.,
        
        
          Jorgensen, H.F., Sass, S., Theis, F.J., Beckers, J., Berninger, B., et
        
        
          al. (2015). Transcriptional Mechanisms of Proneural Factors and
        
        
          REST in Regulating Neuronal Reprogramming of Astrocytes. Cell
        
        
          Stem Cell 17, 74-88.
        
        
          Mattugini, N., Bocchi, R., Scheuss, V., Russo, G.L., Torper, O., Lao,
        
        
          C.L., and Götz, M. (2019). Inducing Different Neuronal Subtypes
        
        
          from Astrocytes in the Injured Mouse Cerebral Cortex. Neuron
        
        
          103, 1086-1095.e5.
        
        
          Meng, W., Mushika, Y., Ichii, T., and Takeichi, M. (2008). Anchor-
        
        
          age of microtubule minus ends to adherens junctions regulates
        
        
          epithelial cell-cell contacts. Cell 135, 948-959.
        
        
          Mesman, S., and Smidt, M.P. (2017). Tcf12 Is Involved in Early
        
        
          Cell-Fate Determination and Subset Specification of Midbrain
        
        
          Dopamine Neurons. Frontiers in molecular neuroscience 10, 353.
        
        
          Ninkovic, J., Steiner-Mezzadri, A., Jawerka, M., Akinci, U., Mas-
        
        
          serdotti, G., Petricca, S., Fischer, J., von Holst, A., Beckers, J., Lie,
        
        
          C.D., et al. (2013). The BAF complex interacts with Pax6 in adult
        
        
          neural progenitors to establish a neurogenic cross-regulatory
        
        
          transcriptional network. Cell Stem Cell 13, 403-418.
        
        
          
            PRIZE WINNERS 2019